Progression in Teaching Multiplication

Mental Skills

Recognise the size and position of numbers
Count on in different steps $2 s, 5 s, 10 s$
Double numbers up to 10
Recognise multiplication as repeated addition
Quick recall of multiplication facts
Use known facts to derive associated facts
Multiplying by $10,100,1000$ and understanding the effect

Multiplying by multiples of 10

Models and Images

Counting apparatus
Place value apparatus
Arrays100 squares
Number tracks
Numbered number lines
Marked but unnumbered lines
Empty number lines.
Multiplication squares
Counting stick
Bead strings

Models and Images charts
ITPs-Multiplication grid, Number Dials, Multiplication Facts
Numicon

In developing a written method for multiplication, it is important that children understand the concept of multiplication, in that it is:

- repeated addition

They should also be familiar with the fact that it can be represented as an array
They also need to understand and work with certain principles, i.e. that it is:

- the inverse of division
- commutative i.e. 5×3 is the same as 3×5
- associative i.e. $2 \times 3 \times 5$ is the same as $2 \times(3 \times 5)$

Early Learning Goal:
 Children solve problems, including doubling.

Children are encouraged to develop a mental picture of the number system in their heads to use for calculation. They should experience practical calculation opportunities using a wide variety of equipment, including small world play, role play, counters, cubes etc.

Children may also investigate putting items into resources such as egg boxes, ice cube trays and baking tins which are arrays. An array is objects or shapes arranged in a rectangle.

They may develop ways of recording calculations using pictures, etc.

Y1

End of Year Objective:
Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

In year one, children will continue to solve multiplication problems using practical equipment and jottings. They may use the equipment to make groups of objects. Children should see everyday versions of arrays, e.g. egg boxes, baking trays, ice cube trays, wrapping paper etc and use this in their learning, answering questions such as 'How many eggs would we need to fill the egg box? How do you know?'

y2

> End of Year Objective:
> Calculate mathematical statements for multiplication (using repeated addition) and write them using the multiplication (x) and equals (=) signs.

Children should understand and be able to calculate multiplication as repeated addition, supported by the use of practical apparatus such as counters or cubes. e.g.
3×4 can be shown as four groups of three with counters, either grouped in a random pattern, or in a more ordered pattern, with the groups of three indicated by the border outline:

Children should then develop this knowledge to show how multiplication calculations can be represented by an array, (this knowledge will support with the development of the grid method in the future). Again, children should be encouraged to use practical apparatus and jottings to support their understanding, e.g.

4×3* can be represented as an array in two forms (as it has commutativity) An array is objects or shapes arranged in a rectangle. Arrays are very important in helping children to understand how multiplication works. They learn that in the array the answer is always the same (eg 4×3 is the same as 3×4) even when you rotate.

$$
4 \times 3=4+4+4=12
$$

$$
3 \times 4=3+3+3+3=12
$$

Cavendish Community Primary School

Initially, children will continue to use arrays where appropriate linked to the multiplication tables that they know (2,3,4,5,8 and 10), e.g.
3×8. Children can also use a numberline to work out multiplication tables.

As they progress to multiplying a twodigit number by a single digit number, children should use their knowledge of partitioning two digit numbers into tens and units/ones to help them. For example, when calculating 14×6, children should set out the array, then partition the array so that one array has ten columns and the other four.

This method is the precursor step to the grid method. Using a two-digit by single digit array, they can partition as above, identifying the number of rows and the number of columns each side of the partition line. By placing a box around the array, as in the example below, and by removing the array, the grid method can be seen. It is really important that children are confident with representing multiplication statements as arrays and understand the rows and columns structure before they develop the written method of recording.

Children should also be using this method to solve problems and multiply numbers in the context of money or measures.

End of Year Objective:
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.

Children will move to Y 4 using whichever method they were using as they transitioned from Y3. They will further develop their knowledge of the grid method to multiply any two-digit by any single-digit number, e.g.
79×8

x	70	9
8	560	72

$$
\begin{array}{r}
560 \\
+\quad 72 \\
\hline 632 \\
\hline
\end{array}
$$

To support the grid method, children should develop their understanding of place value and facts that are linked to their knowledge of tables. For example, in the calculation above, children should use their knowledge that $7 \times 8=56$ to know that $70 \times 8=560$.

By the end of the year, they will extend their use of the grid method to be able to multiply three-digit numbers by a single digit number, e.g.

$$
346 \times 8
$$

x	300	40	6
8	2400	320	48

2400
$+\quad 320$
$+\quad 48$
2768

When children are working with numbers where they can confidently and correctly calculate the addition (or parts of the addition) mentally, they may do so.

Children should also be using this method to solve problems and multiply numbers in the context of money or measures.

The use of practical equipment should still be encouraged at this stage.

$\underline{y 5}$

End of Year Objective:
Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.

Children should continue to use the grid method and extend it to multiplying numbers with up to four digits by a single digit number, e.g.
4346×8

x	4000	300	40	6
8	32000	2400	320	48

32000
$+\quad 2400$
$+\quad 320$
$+\quad 48$

and numbers with up to four digits by a two-digit number, e.g.
2693×24

When children are working with numbers where they can confidently and correctly calculate the addition (or parts of the addition) mentally, they may do so.

Children should also be using this method to solve problems and multiply numbers in the context of money or measures.

Linking the grid method and formal algorithm

When children are working with decimals, they can continue to link the grid to the above method. Books cost $£ 1.49$. How much will it cost for 7 books.

Y6

End of Year Objective:
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
Multiply one-digit numbers with up to two decimal places by whole numbers.

By the end of Y 6 , children should be able to use the standard method to multiply any number by a two-digit number or a decimal.

